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A b str a c t

Over the last few years, the Probabilistic method has become an im portant tool 

in Computer Science and Combinatorics. This thesis deals with three applications 

of the Probabilistic method. The first problem concerns a model of imperfect ran­

domness: the slightly-random source of Santha and Vazirani. In a slightly-random 

source with bias £, the conditional probability th a t the next bit output is I, given 

complete knowledge of the previous bits output, is between |  — e and |  +  e. We 

show tha t, for every fixed e < and for most sets, the probability of hitting tha t set 

using a slightly-random source is bounded away from 0. The second problem arises 

in parallel and distributed computing. A set of n processors is trying to collectively 

flip a coin, using a protocol tha t tolerates a large number of faulty processors. We 

demonstrate the existence of perfect-information protocols th a t are immune to  sets 

of en faulty processors, for every fixed e < | .  Finally, we consider a problem in 

Ramsey theory. Let an adversary color the edges of the Binomial random graph 

with r colors, the edge probability being where c is a large enough constant. 

We show th a t, almost surely, a  constant fraction of the triangles in the graph will 

be monochromatic.
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Chapter 1

Introduction

The Probabilistic method, pioneered by Paul Erdos, has recently become a signif­

icant tool in the areas of Combinatorics and Theoretical Computer Science. The 

essence of the Probabilistic method can be described as follows: We want to  prove 

the existence of a combinatorial structure th a t satisfies certain properties. To do 

so, we create an appropriate probability space and show th a t a  randomly chosen 

element has the desired properties with strictly positive probability. Here is an ex­

ample. Given a graph G  =  (V, E ) with n vertices and e edges, we want to show 

the existence of a bipartite subgraph H  =  (Vi ,V *  E') with a t least |  edges. For 

each vertex v in V, independently and randomly put it in Vi or V2. By linearity of 

expectation, the average number of cross edges between Vi and V2 is equal to  e /2 . 

Therefore, the probability tha t a random partitioning of the vertices results in |  

cross edges is strictly positive. This implies the existence of a bipartite subgraph 

with at least § edges. A full exposition of the probabilistic method, replete with

1
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eye-opening examples can be found in [ASE92,Spe87].

The use of the Probabilistic method in computer science is a  relatively recent 

phenomenon. But it has caught on rapidly, and is now used almost everywhere. 

Randomized algorithms have always been considered im portant, especially for their 

practical value. Some wonderful examples include the algorithm for primality testing 

by Rabin [Rab76] and the fundamental work on polynomial identities by J. Schwartz 

[Sch80]. The use of random restrictions is a powerful technique to  provide lower 

bounds for various problems. It is im portant to  point out tha t the probabilistic 

method does not provide an explicit construction of the combinatorial structure we 

are searching for. Sometimes, we can show the existence of an efficient algorithm but 

finding an explicit construction is very difficult. So, it would be nice to be able to 

actually construct one in polynomial time. Derandomizing such proofs has received 

a lot of attention of late; see [ASE92,Spe92] for more on this.

This thesis highlights three applications of the probabilistic method. The first 

involves an im portant issue in the field of randomized algorithms; namely, how can 

we obtain true randomness out of the imperfect random sources available to us? 

The second is an application of the probabilistic method to show the existence of 

a  good algorithm. A set of processors are trying to  achieve a  goal. We want to 

provide a protocol tha t will work even if many of the processors are faulty. We 

show that a  random protocol, drawn from an appropriate probability space, is very 

fault-tolerant. Finally, we focus on a problem in pure combinatorics. This is a 

problem that arises in Ramsey theory. The following is a  brief description of the

2
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three results.

1.1 Slightly-R andom  Sources

Randomized algorithms, which often provide simpler, faster ways to solve problems, 

usually assume the existence of a source of true randomness. There is a  witness set 

5 , a subset of {0, l}n, tha t the algorithm is trying to  hit. Unfortunately, physical 

sources of randomness, such as Zener diodes, are not truly random. Santha and 

Vazirani [SV86] devised a notion of randomness tha t approximates the behavior 

of physical sources. A slightly-random source (with bias 0 < t  < | )  is a sequence 

x — (x i, a?2j • • •; £«) of random bits such tha t the conditional probability that n  =  1, 

given the outcomes of the first i — 1 bits, is always between \  — t and | + t .  Intuitively, 

an adversary, who knows the complete history of previous coin flips, gets to choose 

the bias of each coin so tha t the sequence generated will avoid the witness set S. 

Define the e-biased probability P re(S )  of S  by

P rt(5 ) =  min Pr[a; £ 5],
X

where x  ranges over all slightly-random sources with bias e. For example, Pro(5) = 

|5 |/2 n, whereas P r1y2(*?) =  0 (unless S  =  ( 0 , l} n). The e-biased probability mea­

sures the minimum odds of hitting 5  when our adversary, who knows 5 , gets to 

decide the bias of each coin flip. Slightly-random sources would be ideal if, for some 

fixed 6 >  0 , the €-biased probability of a witness set S  were always within a  constant 

factor of |5 '|/2n. Unfortunately, this is not always possible, as observed by Alon and

3
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Rabin [AR89]. Instead, we aim for a bound that applies to almost every witness 

set. Alon and Rabin [AR89] showed tha t for € < ^(s/2  — 1) «  .207, the c-biased 

probability of almost every witness set is bounded away from 0. They posed the 

open question of whether the same conclusion is valid for every c < ^. We answer 

it in the affirmative. See also [BN93a].

T h e o re m  2.10: For every e < there is a constant ct > 0 such th a t for almost 

every witness set 5 , the e-biased probability of hitting S , Pre(S) is at least ct . □ 

The Alon-Rabin result is obtained by a second moment method. For our result, 

we need to  estimate the higher moments of the underlying random process and this 

makes the proof more interesting.

1.2 C ollective Coin Flipping

Closely related to the biased coin problem is the problem of collective coin flip­

ping. In the area of parallel and distributed computing, often a set of processors 

have to  produce the same random bit in order to perform some task. We could 

simply designate some processor as a  leader, and make it generate a  random bit 

that all the other processors would accept. However, the  processor could be faulty, 

so we would like to design a protocol tha t would work even with many faulty pro­

cessors. We will permit only broadcast messages and therefore trea t the problem 

as a perfect-information game. Also, we want the protocol to be robust against 

large coalitions of faulty/dishonest processors. Ben-Or and Linial [BL85,BL89]

4



www.manaraa.com

formalized the notion of coin flipping protocols as perfect information games. A 

perfect-information coin flipping protocol for a set of processors N  is a rooted tree 

T . Every interior vertex v is labelled by the name of one processor. Also associated 

with v is a  probability distribution Dv on its children. The leaves are labelled 0 

or 1. The protocol starts at the root vertex r  with the corresponding processor 

choosing one of r ’s children according to the distribution Dr \ the protocol proceeds 

to  the chosen vertex and repeats. Finally a leaf is reached; the value at the leaf is 

said to  be the outcome of the protocol. Let P r(T  =  1) be the probability tha t the 

outcome of the protocol is 1. Let S  C N  be a coalition of faulty/dishonest proces­

sors. For i 6 {0,1}, let P rs(T  =  i) be the minimum probability th a t the outcome 

of the protocol is i when the coalition plays the optimal strategy. Faulty processors 

need not use the probability distribution. A protocol T  is immune to t cheaters if 

P t s ( T  = 0) and P rs (T  =  1) are bounded away from 0 , as n approaches infinity, for 

every coalition S  of size t or less. One way to solve the coin flipping problem is to 

first elect a leader and then let the leader flip a  coin. Saks [Sak89] noted that no 

coin-flipping protocol for n players could be immune to \n j2] cheaters. Alon and 

Naor [AN93] show the existence of a  protocol th a t is immune to  cn cheaters, for 

every c < They do this by solving the leader election problem and their proof is 

probabilistic. They asked if there exists a  protocol that is immune to cn cheaters, 

for every c < ^. We improve the analysis of their protocol to  answer the question 

in the affirmative. See also [BN93b].

T h e o re m  3.1: For every c < 5 , there exists coin flipping protocols and leader

5
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election protocols that are immune to en cheaters. □

1.3 A  R am sey-theoretic R esu lt

The power of the probabilistic method in combinatorics was demonstrated first by 

Erdos [Erd47] and later by Erdos and Renyi [ER60] when they laid the foundation 

for the theory of random graphs. Since then, numerous new combinatorial results 

have been proved using this beautiful technique and elegant proofs provided for 

classical theorems [ASE92]. Also, the theory of random graphs has developed into a 

rich field with many exciting problems. Ramsey theory [GRS90] is one fascinating 

area where the theory of random graphs comes into play quite naturally. A very 

exciting recent result is a random Ramsey result of Rodl and Rucinski [RR94]. 

They show: For every r  > 2, there is a  C  > 0 such th a t if p > C /y /n  then 

almost surely every r-coloring of the edges of the random graph G (n,p) results in 

a monochromatic triangle. Their proof involves a very clever application of the 

Szemeredi regularity lemma and is full of nice probabilistic lemmas. W hat about 

the number of monochromatic triangles? If we are guaranteed one monochromatic 

triangle, are we guaranteed many? Here, we show tha t indeed, almost surely, a 

fraction of the triangles will be monochromatic.

T h eo re m  4 .2: For every r  > 2, there is a C > 0 such tha t if p > C /y /n , then 

almost surely, every r-coloring of the edges of the random graph G (n ,p ) results in 

ft(n3/ 2) monochromatic triangles. □

6
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The organization of the thesis is as follows. Chapter 2 discusses the problems 

and results on slightly-random sources. Chapter 3 deals with perfect information 

coin flipping and leader election protocols. In Chapter 4, we discuss the Ramsey- 

theoretic result concerning monochromatic triangles. Chapter 5 mentions the open 

problems and possible areas for future research.

7
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Chapter 2

Slightly-R andom  Sources

2.1 Introduction

Several applications, such as randomized algorithms [Rab76], cryptographic proto­

cols [Blu82,GM82] and stochastic simulation experiments [KG], assume the existence 

of a source of truly random bits. However, the available physical sources are im­

perfect. We would therefore like to be able to  model these imperfect sources and, 

hopefully, be able to  extract truly random bits from them. One simple model of an 

imperfect source is a coin with an unknown but fixed bias. Von Neumann [von63] 

proposed a simple algorithm to generate truly random, independent bits from such 

a  coin. Later Blum [Blu84] considered the problem of generalizing this simple model 

to  a finite state Markov process. He showed tha t the obvious generalization of Von 

Neumann’s idea does not work in this case. However, and surprisingly, he showed 

th a t changing the order in which the bits are output yields completely random, in­

8
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dependent bits. A much more general model of randomness was devised by Santha 

and Vazirani [SV86]. They call their model a  slightly-random source. A slightly 

random source (with bias 0 < c < 5 ) i s a  sequence x  =  ( ® i , . . . ,x n) of random  

bits such th a t the conditional probability th a t =  1, given the outcome of the  first 

i — 1 bits, is always between |  — c and 5 +  c. The intuition is tha t the bias of next 

coin flip is decided by an adversary who has complete knowledge of the history of 

the process. M urry [Mur70] explains th a t this models the known practical sources 

of Tandomness such as the zener diode, in which the frequency of 0’s and l ’s drifts 

over a  period of time. There are other models of weakly random  sources such as 

the ‘probability-bounded’ source of Chor and Goldreich [CG88] and the 6-source 

[Zuc91]. For an extensive review of these and other sources, see [BLS87,Vaz86]. We 

will be concerned with the slightly-random source only.

2.2 P rev iou s W ork

Santha and Vazirani [SV86] devised the notion of a  slightly-random source. Then, 

they asked the following natu ra l question: How can we generate better random  bits 

from the bits of a  slightly-random source? They noted th a t there is no algorithm  to 

extract a  sequence of absolutely unbiased coin flips from th e  bits of a  slightly-random 

source. They next turned to  the idea of generating strings th a t look random , called 

quasi-random strings.

9
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D efin itio n  2 .1  A functional statistical test is a function f  : {0,1}* *-» [0,1], where 

[0 , 1] denotes the unit interval.

We are given a  source, which for every length n, generates n-length strings 

x  G {0,1}” with some probability p(x). Let p n ( f )  = D |x|=n / ( * )  be the average 

value of /  on random  strings of length n. Let / /„ ( /)  =  IC ixisnPW /C 1 )) be the 

average value of /  on strings of length n generated by the slightly-random source.

D efin itio n  2.2 A quasi-random source is a source such that fo r  every t > 0, fo r  

n  sufficiently large, and fo r  every functional statistical test f ,  we have \pn{ f )  —

M n ( / ) l  <

Note tha t /  need not even be computable. Now, Santha and Vazirani [SV86] show 

th a t quasi-random sources have very strong properties th a t enable them to  replace 

truly random sources. We s ta te  one of their theorem s without proof.

T h e o re m  2.3  Let G  : {0,1}* —* {0,1}* be a pseudo-random number generator that 

passes all probabilistic polynomial time statistical tests. Then G  with seeds generated 

by a quasi-random source also passes all probabilistic polynomial time statistical 

tests. □

They also showed th a t quasi-random sequences can be used to  replace the coin flips 

in any algorithm th a t generates a  desired distribution from a  sequence of good coin 

flips. Since quasi-random sequences seem to  be very powerful, it would be nice to  be 

able to extract quasi-random sequences from th e  bits output by a  slightly-random

10
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source. Unfortunately, [SV86] showed tha t the bits of a  single slightly-random source 

are not sufficient to  do this. They, however, provided an algorithm th a t takes the 

b its from fl(log n ) independent slightly-random sources to  generate a  quasi-random 

sequence. Subsequently, Vazirani [Vaz87] showed how to do this with only two 

independent sources.

Vazirani and Vazirani [VV85] looked a t some complexity theoretic issues related 

to  slightly-random sources. Recall th a t R P  is the class of problems solvable in 

polynomial tim e, using a  tru ly  random source. More formally,

D efin itio n  2 .4  A  language L is in R P  i f  there exists a polynomial p, and a deter­

m inistic polynomial time algorithm M , which accepts a string r o f p{\x\) bits from  

a source o f truly random bits, and such that:

1) I f  x €  L, P r(A f accepts x ) >

2) I f  x & L, M ( x , r )  always rejects x.

Associated w ith a  randomized algorithm is the notion of witness sets. The witness 

set W( x )  =  { r |A f(x ,r)  accepts x)} . Along similar lines to the definition of R P , 

Vazirani [Vaz87] defined the class SR P :  the class of problems solvable in polynomial 

time, using a  slightly-random source.

D efin itio n  2 .5  A  language L  is in S R P  if:

For every e <  there exists a deterministic polynomial time algorithm M  that can 

accept bits from  a slightly-random source having bias e and such that:

1) I f  x  G L, P r(M  accepts x )  >  5 .

11
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2) I f  x (fc L, M  always rejects x.

It is easy to see that P  C S R P  C R P . The central question here is the relation 

between P  and RP. One hopes to achieve a better understanding of this problem 

by studying the class S R P . Vazirani and Vazirani [VV85] showed tha t indeed, 

S R P  = RP .

T h eo re m  2 .6  SRP = RP. □

To do this, they showed how to  sample polynomially many strings using a slightly- 

random source, so that at least one of the sampled strings is a witness with proba­

bility at least if the input string i  € L. They also extended their proof to show 

that the complexity class B P P  can be simulated using a  slightly-random source. It 

is interesting to  note tha t Chor and Goldreich [CG88] showed how to  simulate BPP 

using a weaker source, called a  “probability-bounded” source. Zuckerman [Zuc91] 

showed how to  simulate BPP using an even weaker source, called a “^-source” . In all 

three cases, they transform the bits of the imperfect source to create a  polynomial 

number of n-bit strings, most of which will be witnesses with high probability.

Alon and Rabin [AR89] study the properties of bits produced directly by a 

single slightly-random source. They note that it is not clear tha t we can assume 

the existence of two independent sources, for the bad behavior might be due to 

the environment in which case the two sources could influence each other. Also, no 

transformation is permitted; the random bits must be used directly. This restriction 

has the advantage tha t the resulting algorithm, when it works, will be more efficient.

12
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We would need only n  random bits to  produce an n-bit number (unlike the large 

polynomial number of n-bit strings). No extra space is required either.

2 .2 .1  T h e  A lo n -R a b in  r e su lt

In their paper, Alon and Rabin [AR89] study the properties of bits produced directly 

by a single slightly-random source. The framework is as follows. Recall that a 

slightly-random source (with bias 0 < e < is a  sequence x  = ( x i ,x 2, ..  . ,x n) of 

random bits such th a t the conditional probability th a t x; =  1, given the outcomes 

of the first i — 1 bits, is always between ^ — e and 5 +  £. Intuitively, we are flipping a 

bunch of coins, bu t our adversary, who knows the complete history of previous coin 

flips, gets to choose the bias of each coin.

In addition, there is a  “witness set” S  tha t we are trying to hit, where S  is some 

subset of {0, l}n (the set of all binary sequences of length n). Define the e-biased 

probability P rt (S)  of S  by

P re(5 ) =  m inPr[x G 5],
X

where x ranges over all slightly-random sources with bias e. For example, Pro(5) — 

|S |/2 n, whereas P r1/i2(5 ) = 0 (unless S  =  {0,1}"). Intuitively, the e-biased proba­

bility measures the minimum odds of hitting S  when our adversary, who knows S , 

gets to choose the source.

Is the e-biased probability of a  witness set S  always within a constant factor of 

|5 |/2 "?  Unfortunately, the answer is no, as observed by Alon and Rabin [AR89].

13
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As a counterexample, consider the majority set (for an odd integer n )

MAJ = {x € {0, l}n : £ > >
i=l

whose unbiased probability is | ,  but whose c-biased probability is exponentially 

small for every fixed e > 0. Consequently it is impossible to  obtain a strong bound 

for every witness set.

They then determine the “worst possible” set S  C {0 ,1}" of cardinality k. Define 

a linear order on the set of all strings of length n  as follows. For a; =  ( x j , . . . ,  xn) 

and y = (yi ,  • • •, yn), set x < y  if and only if Y X ,i  < D?=i 2/« or E"=i x i = E IL i 2/i 

and ^ " _ i  x,-2’ < ]C?=i 2/i2*. Call a set S  compressed if x E S  and x < y implies tha t 

y G S . It is easy to  verify th a t a compressed set contains all strings with at most j  

0 ’s and possibly some strings with exactly ( j  + 1) 0 ’s, where j  satisfies the following 

inequality.

For a  set S', let C S  denote the unique compressed set of size |S |. The following 

lemma shows that the best strategy for the adversary to avoid a compressed set is 

to bias each flip towards 0.

L e m m a  2.7 Let S  and j  satisfy the above inequality. Let r  =  |S | -  (")•

Then for every 0 < e <

T r.(C S)  = E  ( ” ) ( !  +  -  £)’“ ‘ +

□

14
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The following lemma shows tha t for a  number k, the compressed set of k strings is 

the easiest set for the adversary to avoid.

Lem m a 2.8 For every 0 < € < ^ and for every set S,

P r£(S) > P r£(CS).

Using the above two lemmas, one can show that if e < then for sets 5  such 

that |5 | — c2n, the biased probability P re(5) is bounded away from 0. However, 

if e grows asymptotically faster than then P r£(C S) goes to 0 as n  approaches 

infinity.

W hat happens if the set S  is a  random set of binary strings? Is it true tha t 

P r£(S) is bounded away from 0 for almost every set S t  (Here S  ranges uniformly 

over all subsets of {0 , l}n, and “almost every” means a 1 — o(l) fraction as n tends 

to infinity.). Alon and Rabin [AR89] showed tha t for e < ^(>/2 — 1) ~  .207, the 

e-biased probability of almost every witness set is bounded away from 0. To do so, 

they use a recursive calculation of the c-biased probability of a  witness set S. Given 

a vector x = ( x i ,x 2) in &2, define its biased mean by

B ( x )  =  min(pizi +  V2Xi,p2X\  +  Pi x 2),

where pi = % — e and p2 — \  + t- Let T  be the complete binary tree of height n, 

whose leaves naturally correspond to the binary sequences of length n. A leaf is 

labelled 1 if the corresponding binary sequence is in 5 ; otherwise it is labelled 0. 

Given an interior node whose two children are labelled x \ and X2, define its label

15



www.manaraa.com

to be the biased mean B (x  1, 2:2)- Then the label of the root is indeed the €-biased 

probability of S . Taking expected values of the labelling above leads to

E(5(a:)) = EK L + E1^ )  _ €E(|Xi _ l2 |}-

Because x\ and x2 come from disjoint subtrees, they are independent, identically- 

distributed random variables. Alon and Rabin [AR89] used the second-moment 

method to estimate E(|xi — X2I). They showed that, for e < 0.207, the variance of 

x i  contracts as we go up the tree. This leads to  their main result. Here we provide 

a  simpler proof of their contraction lemma. For a random variable 2 , let Var(2) 

denote its variance.

L em m a 2.9 I f  x \ and X2 are independent, identically distributed random variables, 

then

Var(B(x))  < 2 ( j  +  e)2V ar(ii).

P roof: W ithout loss of generality, E(x  1) =  E ( x 2) =  0.

Let m  = m in (x i,x 2) and M  =  max(xi,X2). By the definition of B , we have

B(x)  = ( i  + e)m +  -  e)M.

Squaring both sides leads to

B(x)2 = (5 +  c)2m2 +  ( i  -  €)2Af2 + 2 ( |  +  e ) ( i  -  e)mAf

< (5 +  €)2(*i +  ^ 2) +  2( |  +  c) ( 5 - £)x i a:2.

Taking expected value of both sides gives

< 2 (1  +  <)! £(*?).

16
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This implies the lemma. □

2.3 Statem ent o f  R esults

Our first result is an affirmative answer to  the Alon-Rabin question. More precisely,

T h eo re m  2.10 For every fixed e < there is a constant cc > 0 such that fo r  almost 

every witness set S  C {0, l} n, the t-biased probability o f hitting S , P re(5) > ce. □

The constant ct necessarily tends to 0 as e increases to  5 . Our proof shows tha t ct 

is at least where p =  |  — c. We do not know if this lower bound can be

improved.

Our work actually applies to a more general situation than the one described 

above. First, the witness set need not have a uniform distribution; all tha t m atters 

is that the events “x G 5 ” (for x in {0,1}” ) be mutually independent. Second, the 

source need not output merely bits; any finite alphabet will do. (Example: dice.) 

For simplicity, we omit these generalizations here.

2.4 Significance of Work

The slightly-random source is quite general, and models many real-world sources. It 

allows many kinds of correlation among the random bits. It permits the adversary 

to  know the witness set, to know the complete history of previous coins, and to be 

computationally powerful. O u t  result holds for any € less than | ,  which means tha t 

the coins may become arbitrarily biased.

17
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Our proof technique is interesting as well. Alon and Rabin [AR89] used a  second- 

moment method to analyze the underlying random process. Unfortunately, this 

method provably fails for e larger than | ( \ / 2 —1) ss .207. Instead, we analyze a higher 

moment of the random process. Because higher moments have fewer properties than 

does the second moment, many technical complications arise. Nevertheless, through 

the judicious use of classical inequalities, we are able to make this higher-moment 

method succeed.

2.5 P roof o f M ain R esult

In this section, we prove tha t the e-biased probability of almost every witness set is 

bounded away from 0, for every e < 1/2. To do so, we rely on a recursive calculation 

of the €-biased probability of a witness set S. Given a vector x  — (11 , 12) in ^ 2, 

define its biased mean by

B (x } = min(piZ] + P2X2 ,P2Xi + P ix2),

where pi = |  — e and p2 =  ^ +  e. Let T  be the complete binary tree of height n, 

whose leaves naturally correspond to  the binary sequences of length n. Recall the 

formulation given in section 2 .1 . It is easy to see tha t the expectation En at the 

root is

S n ^ O - f E E d z ^ - X ^ I ) ,
1=0

where x ^  and are two independent random variables on level i. (At the leaves, 

the expectation is Eo = 5 .) Alon and Rabin [AR89] used the second-moment method
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to estimate E (|zi — a^l)- They showed th a t E ((zi — X2 )2) contracts as we go up the 

tree. This implies an exponentially small bound for E ( |i i  — Z2I), thereby providing 

the result. Unfortunately, the contraction holds only when e < | ( \ / 2 -  1) w 0.207.

Instead, we shall show th a t, for every e <  5 and every sufficiently large number d, 

the dth moment E(|a;i — %2 \d) contracts.

Given a vector x in 5R2, define its biased norm by

||* || =  max(|pia;i +  p 2x 2\, \p2X1 +  P \ x 2\).

Our first lemma says th a t the biased mean is a Lipschitz continuous function.

L em m a 2.11 I f  x and y are two vectors in  S22, then

I B ( x ) - B ( y ) l  < | |* -y | | .

P ro o f: Let 6 = | |z —y||. The definition of 6 implies the following two inequalities:

P1X1 +P2X2 < P \y i+ P 2V2 + S 

p 2x i  +  p i x 2 <  p?V  1 r P\V2 +  <5-

By the definition of B , the minimum of the two left-hand expressions is B(x); the 

minimum of the two right-hand expressions is B(y) + 6 . Hence B(x)  < B(y)  +  <5. By 

symmetry, it follows th a t B(y)  < B(x)  +  S. Combining these last two inequalities 

leads to  the desired result. □

The next lemma relates the biased norm to  more classical norms.

L em m a 2.12 I f  x is a vector in  3f£2 and d > I is a real number, then

ll(*i,*a)ll', + ll(-*i,*2)l|d < ed*.!' +
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, , d/d- 1 . d/d-1^"1 . jwhere c = (p1' + p2 ) +  P2-

P ro o f: Assume th a t x \ and x 2 are non-negative. (The other three cases are

similar.) The first term  on the left is dealt with using Holder’s inequality [HLP52]. 

T hat inequality tells us that

|p iz i + p2x 2\d < (p t , d ~ 1 +p'2 d~1)d 1( |* i |d +  |®2|d)>

The same bound holds for |p2»i -l-p ia^l^  and hence for ||(a i,a :2)||.

The second term on the left is even easier to deal with. We have

| - p i i i  + p 2x 2\d <  m ax(p i|ii|,p2 |i2 |)d

< Pilzil^ +  P ^ l *

< P^(l*i|d + |x 2|d).

The same bound holds for | - p 2x-i -t-piX2|d» and hence for ||( -x i ,X 2) ||. Adding up 

the bounds for the two terms on the left completes the proof. □

We obtain the following corollary on the biased mean.

C o ro lla ry  2.13 I f  x and y are two vectors in SJ2 and d > 1 is a real number, then 

\B(x1 , x 2) - B ( y i ,  y2)\d + \B(yi , x 2) -  B {x i , y2)\d

< c ( | x i - y i | d +  |a:2 - P 2 |‘i),

where c = (pf/d_1 +  p ^ -1 ) +  P2-
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P ro o f: Apply Lemma 2 .1 1  to both terms on the left. Now, apply Lemma 2.12

to prove the Corollary. □

We can now prove the contraction theorem tha t we have been looking for.

T h e o re m  2.14 Let x and y be two random vectors in 5R2 such that x i ,  x 2, yi, and 

y2 are mutually independent, and such that i j  and y\ are identically distributed. 

Then for every real number d > 1,

E(|2?(x) -  B(y)\d) < ~E(\Xl -  y i \d + |x2 -  y2\d),

where c = (p?/d-1 + p2 d~*) +  pd-

P ro o f: Take expected values of both sides of the inequality in Corollary 2.13.

The two terms on the left side have the same expected value, because the tuple 

{xi ,X2 , y i ,V2) has the same distribution as the tuple ( y i , x 2 , x i , y 2). Dividing by 2 

gives the result. □

Theorem 2.14 is a contraction result. The constant c can be made less than 1 

by choosing d sufficiently large. T hat is because as d tends to  infinity the value of

c tends to  p%lp%2 < 1* hi fact, the choice d = j^-log ^  makes c < 1.

Next, we will attem pt to  show tha t the expectation E n a t the root is bounded 

away from 0 . Define A/,- =  E(|X|^ — x 2 V ) -

T h e o re m  2.15 For every 0 < c < 1/2, the final expectation E n is at least E q —

cMo/d/ ( l  -  c1̂ ) ,  where c = (p^ -1  +  p2 d~^) 1 + Pd-
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P ro o f: Applying Theorem 2.14 iteratively shows th a t Mi < c’Mo. Jensen’s

inequality [HLP52] implies that

E(|*<i ) -* < <)|) < E(|xS*>-*(*Y)1/d 

=  M ]'d 

< c ^ dM l /d.

Summing this bound for every i > 0 leads to a  geometric series whose sum is 

M0lA7 ( l  — c1̂ ) .  Plugging this estimate into the displayed formula for E n given 

near the beginning of this section finishes the proof. □

We still have not shown that En is bounded away from 0 for every e < | .  That 

is because as £ approaches i ,  the value of d approaches infinity, causing 1 — cl !d 

to  approach 0, which renders the bound of Theorem 2.15 useless. Instead, we will 

start with another initial distribution for which it is clear tha t the final expectation 

is bounded away from 0 , and then we will use a  majorizing argument to  show the 

same for our original initial distribution. The same idea was used by Alon and 

Rabin [AR89].

A random variable x is said to stochastically dominate a random variable y if 

Pr[x > f] is at least Pr[y > t] for every t.

T h e o re m  2.16 For every 0 < c < the final expectation En is bounded away from  

0 .

P ro o f: Given a non-negative integer k  to  be chosen la ter, consider the  new initial
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distribution

V =
0 , with probability 2 2>t;

P j, otherwise.

The new initial expectation is a t least P i( l — 2-2*) ~  p*. The new initial moment 

is at most 2l ~^kp \ d. Therefore, we can choose k  sufficiently large so tha t, by Theo­

rem 5 , the final expectation is bounded away from 0 , if our initial distribution were 

V-

It is easy to verify tha t the variable a t the Arth level of our original process 

stochastically dominates y. Combined with the monotonicity of our biased mean 

operator B, we have the result. □

Not only is the expected value of Pre(5) bounded away from 0, but in fact almost 

every S  will have P r^B ) bounded away from 0. T hat is because the moment Mn 

is exponentially small. Therefore all but an exponentially-small fraction of witness 

sets S  will have c-biased probability bounded away from 0.
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Chapter 3

C ollective Coin Flipping

3.1 Introduction

In parallel and distributed computing, a  set of processors often have to produce 

the same random bit in order to perform some task. This is easy if we assume 

th a t no processor is faulty. To produce this bit, we could simply designate some 

processor as the leader, and have it generate the random bit. However, this processor 

could be faulty and then the bit generated need not be random. In fact, we have 

to  contend with the worst case scenario. The faulty processor might behave like 

an adversary who is trying to prevent the protocol from achieving its goal. Also, 

there might be many faulty processors. The faulty processors can be considered to 

act like a  coalition of dishonest players/cheaters. We would like to design a  coin 

flipping protocol tha t would work even with many faulty processors. Closely related 

to  the problem of collective coin flipping is the problem of leader election. Here,
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a set of processors wants to elect a leader that is honest/not faulty. Note th a t a 

leader election protocol immediately implies a coin flipping protocol. Elect a  leader, 

then have the leader flip a  coin. The coin flipping problem has been extensively 

studied in the framework of Byzantine agreement [FM88,Rab83]. Feldman and 

Micali [FM88] present a  randomized algorithm for leader election that works well 

even in the presence of a  linear number of faulty processors and also runs in expected 

constant number of rounds. However, in their model, processors are allowed to 

send private messages to  other processors in the network. We will permit only 

broadcast messages and therefore treat the problem as a perfect-information game. 

This model was first formalized by Ben-Or and Linial [BL85,BL89]. The following 

section discusses the m ajor results in the area of perfect information collective coin 

flipping.

3.2 Previous Work

3 .2 .1  O ne r o u n d  p r o to c o ls

We will start with one-round coin flipping protocols [BL85,BL89j. Such a protocol 

is ju st a  Boolean function /  : {0, l}n —*■ {0,1}. That is, all th e  processors supply one 

bit each simultaneously. Let the bit supplied by the ilh  processor be called x ,. The 

bit output is / ( * i , . . . ,  xn). Let us assume tha t the function /  is balanced: it is 1 for 

precisely 2n_1 strings. An example of such a protocol is th e  parity function. Note 

th a t as long as there is even one honest player, the bit ou tpu t is truly random. How
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much influence can each processor/variable have in general? (Note that processor i 

and variable x,- can be used interchangeably). For a  set 5 of variables, assign values 

to variables outside S  a t random. Denote by p the probability tha t given the values 

assigned to variables not in 5 , it is possible to  set the variables in S  so as to make /  

equal to  0. Then, define the influence of S  towards 0: I j ( S )  = p — Similarly, define 

The total influence of the coalition 5 is then I / (S )  =  I j ( S )  + l j ( S ) .  Ben-Or 

and Linial [BL89] present a one-round coin flipping protocol where the influence of 

any particular player is only O ( ^ p ) .  It is easy to  see that for any Boolean function 

/ ,  there is always one variable with influence Consider all the vertices in the

n-cube associated with the function with function value 0. Since the function is 

balanced, there are at 2n_1 such vertices. Now, the edge isoperimetric inequality 

says th a t the minimum number of edges in the associated cut is at least 2n_1 [Bol86]. 

Therefore the sum of the influences is 0 (1). Ben-Or and Linial [BL89] conjectured 

tha t for every balanced boolean function /  on » variables, there is always a  variable 

with influence at least O ( ^ p ) .  Chor and Gereb-Graus [CG87] showed the existence 

of a  variable with influence 3~ ° ^ . Later, Kahn, Kalai and Linial [KKL88] showed, 

using techniques from harmonic analysis, tha t indeed, there is always a variable with 

influence O (^ jp ).

3 .2 .2  M u lti-r o u n d  p r o to c o ls

Ben-Or and Linial [BL85,BL89] formalized the notion of coin flipping protocols as 

perfect information games. A perfect-information coin flipping protocol for a set of
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processors N  is a  rooted tree T.  Every interior vertex v is labelled by the name 

of one processor. Also associated with v is a  probability distribution Dv on its 

children. The leaves are labelled 0 or 1. The protocol starts a t the root vertex 

r with the corresponding processor choosing one of r ’s children according to the 

distribution DT\ the protocol proceeds to the chosen vertex and repeats. Finally a 

leaf is reached; the value at the leaf is said to be the outcome of the protocol. Let 

P r(T  = 1) be the probability th a t the outcome of the protocol is 1. Let 5  C N  

be a  coalition of faulty/dishonest processors. For i £ {0,1}, let P rs (T  = i ) be the 

minimum probability tha t the outcome of the protocol is i when the coalition plays 

the optimal strategy. Faulty processors need not use the probability distribution. 

A protocol T  is immune to t cheaters if P rs(T  =  0) and P rs(T  = 1 )  are bounded 

away from 0 , as n approaches infinity, for every coalition S  of size t or less.

Saks [Sak89] noted that no coin-flipping protocol for n players could be immune 

to [«/2] cheaters. Using induction, one can easily show that either there are fn/2] 

processors tha t can completely influence the protocol towards 0 or there are [n /2] 

processors tha t can completely influence the protocol towards 1.

Ben-Or and Linial [BL85] constructed a coin flipping protocol tha t is immune 

to  0 (n log3 2) cheaters. Saks [Sak89] then came up with a baton passing scheme tha t 

is immune to cheaters. See also Ajtai and Linial [AL89]. The idea is as

follows. Initially, the baton is held by some player. That player then passes the 

baton to one of the remaining players, making the choice randomly. The recipient 

then hands it over to one of the players tha t have not yet been selected, again
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making the choice randomly. This game proceeds till all the players have been 

selected. The player holding the baton then flips a  coin. If the last player is honest, 

the coin will be truly random. It is intuitively clear that the best strategy for the 

cheaters is to pass the baton to one of the honest players. Saks’s proof formalizes 

this intuition to show that this protocol is immune to cheaters. Ben-Or

and Linial [BL89] conjectured th a t this is the best possible bound. However, Alon 

and Naor [AN93] showed, using probabilistic methods, the existence of a protocol 

tha t is immune to  en cheaters, for every e < 5 . In [BN93a], we showed that their 

protocol works for every c < 0.44. Here we show th a t their protocol works for every 

e < ^. We will elaborate on the protocol of Alon and Naor in the next section. In 

their paper, they also provide an explicit construction of a protocol that is immune 

to cn cheaters, for some small, positive constant c. Recently, Cooper and Linial 

[CL93] have shown the existence of fast protocols tha t are immune to cn cheaters, 

for some small constant c. Their protocol requires only polylogarithmically (in n) 

many rounds. Collective coin flipping and slightly-random sources [VV85,SV86] are 

closely related. For a delightful survey of the results on these topics, see Ben-Or, 

Linial, and Saks [BLS87].

3 .2 .3  T h e  A Io n -N a o r  R e s u lt

Alon and Naor [AN93] showed, using probabilistic methods, the existence of a  pro­

tocol th a t is immune to en cheaters, for every e < 5 . In [BN93a], we showed th a t 

their protocol works for every e <  0.44. Later, we show [BN93b] tha t it actually
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works for every fixed e < In this section, we will discuss the Alon-Naor protocol. 

Alon and Naor show the existence of a perfect information coin flipping protocol 

by showing the existence of a perfect information leader election protocol. In the 

case of the leader election problem, we have a  set of processors who wish to elect 

a leader. Some of the processors could be faulty and we wish to design a protocol 

tha t will often elect a leader tha t is good. A leader election protocol can be viewed 

as a rooted tree T. Every vertex v of the tree (including the leaves) is labelled by 

the name of a  processor and has a distribution Dv on its children. The protocol 

starts at the root and proceeds down some path of the tree. It ends when a leaf 

is reached; the processor tha t owns tha t leaf is chosen the leader. For a  coalition 

S  C N,  let P rs(T ) be the minimum probability tha t the coalition fails in getting 

one of its members elected as the leader. A leader election protocol T  is immune to 

t cheaters if P rs(T ) > 6 >  0 for every set 5 of size t or less.

Alon and Naor [AN93] showed the existence of a leader election protocol tha t is 

immune to  en cheaters, where e < | .  Note tha t a good leader election protocol leads 

to a  good coin flipping protocol: Once a leader is elected, let the leader flip the coin. 

This is how Alon and Naor obtain their coin flipping protocol. Their probabilistic 

construction is as follows: Let T  be a complete binary tree of depth k  =  0 (n ). Label 

each vertex of T  randomly and independently by a processor. The resulting tree is 

indeed a leader election protocol for the n  processors. The protocol starts at the 

root node and proceeds down toward a leaf. At each step, the processor associated 

with the current node decides which of its two children the protocol should proceed
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to. Let S  be the set of cheaters. If the current processor is not in 5 , i.e., it is 

honest, then it chooses one of its two children randomly. On the other hand, if the 

current processor is a cheater, then it would choose one of its two children according 

to  some optimal strategy. The leader is the processor associated with the leaf node 

the protocol ends at.

Let 5  be a fixed subset of N  of size cn, for e < 5 . Alon and Naor show that there 

is a constant 6  > 0 such tha t P r[Prs(T ) < £] < ^ -y . This would imply the existence 

of a  leader election protocol meeting our requirements. They use estimates on the 

expectation and variance of P rs(T ). Essentially, they use a recursive calculation of 

P rs(T ). Then, they show that the variance of this random variable contracts as we 

go up the tree. Then, using Chebychev’s inequality, they obtain their result. Alon 

and Naor ask the following question: Does there exist a  coin flipping protocol that 

is immune to coalitions of size cn, for every c < A partial answer was provided 

in [BN93a], where we showed that the random protocol of Alon and Naor works for 

every c < 0.44.

3.3 Statem ent o f R esult

We answer the Alon-Naor question in the affirmative.

T h e o re m  3.1 For every (. < \ ,  there exist coin flipping protocols that are immune 

to coalitions o f size en. □
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3.4 Significance o f Work

Our work supplies an asymptotically-optimal bound on the immunity of coin-flipping 

and leader-election protocols. We show that en faults (for fixed e <' 5 ) can be 

tolerated, whereas Saks showed tha t \ n /2] faults cannot be tolerated. These two 

bounds leave only a tiny gap, namely the case of n f2 — o(n) faults. We suspect that 

this number of faults is impossible to tolerate, but we have not been able to prove 

it.

The perfect-information model is quite strong. The adversary has unlimited 

computational power, so cryptographic techniques are useless. The faulty processors 

are allowed to  coordinate strategy. No private communication is permitted.

The original motivation for collective coin flipping was its application to the 

Byzantine agreement problem. Byzantine agreement can be reached quickly if a 

global coin with not-too-large bias is available (see Rabin [R83]). So our protocol 

may be of use there.

3.5 P roof o f M ain R esult

Recall the construction of Alon and Naor [AN93]. Let T  be a complete binary 

tree of depth k = 0 (n ). Label each vertex of T  randomly and independently by a 

processor. The resulting tree is indeed a leader election protocol for the n  processors. 

The protocol starts a t the root node and proceeds down toward a leaf. At each step, 

the processor associated with the current node decides which of its two children the
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protocol should proceed to. Let 5 be the set of cheaters. If the current processor is 

not in S,  i.e. it is honest, then it chooses one of its two children randomly. On the 

other hand, if the current processor is a cheater, then it would choose one of its two 

children according to some optimal strategy. The leader is the processor associated 

with the leaf node the protocol ends at.

Alon and Naor obtain their result by analyzing the expectation and variance of 

the associated random process. We will, on the other hand, analyze higher moments. 

Interestingly enough, the random process we analyze here is similar to the one 

analyzed in [AR89,BN93a]. See also Chapter 2 . We will use some of the ideas of the 

proof in [BN93a] although we have not been able to  establish any formal relationship 

between the two random processes.

Consider a fixed set of cheaters S  of size en. Let y  be an internal vertex of the 

tree T , let u and v be its children, and let Ty be the subtree rooted at node y. It is 

easy to  see tha t

f  Prs(r “)+Prs(T„) if y £ S;
P rs(T,) = I

 ̂ m in(Pr5 (Ttl),P rs(T v)) if y £ S.

Since the tree T  is random, y G 5  itself is a Bernoulli random variable with 

expectation e. Our aim is to understand the variable P rs(T ) associated with the 

root. Note tha t all the variables associated with the internal nodes at the same 

level are identically distributed. Let wi and w[ be two independent copies of the 

random variable a t height I. At the leaf level w0 is a Bernoulli random variable with 

mean 1 -  e. Now, we would like to  show tha t the expectation E(\wi — w[\d) , for

32



www.manaraa.com

sufficiently large d , contracts as we go up the tree. This would enable us to say, as 

we will see later, tha t the expectation a t the root E(wk)  is bounded away from 0 

and also th a t w;t is bounded away from 0 with very high probability. To do this, we 

need the following lemmas.

Let x =  (11 , 12, 33 , £4) be a fixed vector in 9?4. Define A (x) as follows:

where c — max(2e, +  6(3/4)d.

P ro o f: Since both sides of the inequality are symmetric functions of x, we may 

assume th a t xi < X2 < x3 < x4- The proof now divides into two cases, depending 

on the value of x2.

A (x) =  A i(x) +  A2(x) +  A3(x) +  A4(x),

where

A i(x)
2 2

min(x3,x 4)
d

A 2(3)

c(l -  c) m in (x i,x 2)
d

A 3(x) = e(l -  c) m in (x i,x 2)   —

A 4(x) = e2 jm in(xi, x2) -  min(x3, x 4)\d .

The motivation for A will become clear in the proof of Lemma 2. The following

lemma, an upper bound on A, will be the key tool in proving our contraction lemma.

L em m a 3.2 I f  x is a vector in SR4, then

A ( x i , x 2 , x 3 , x 4 )  +  A ( x 3 , x 2 , x i , x 4 )  +  A ( X ! , X 3 , X 2 , X 4 )  <  5 C ^ | x , -  -  X j \ d ,

«<J
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C ase  1: x2 > X1 f 1*1 • We will obtain an upper bound on each of the three A 

terms on the left hand side of the inequality, and then sum them up to obtain the 

desired result. First, let us bound A ( i i ,X 2 , x 3, £ 4 )- We now bound et ch of its four 

terms.

A i =  ( 1 - 0 2 

= ( i - 0 2

<  ( 3 / 4 ) ‘1| x 4 -  x i | d .

x 3  + X 4  X j  +  X 2

2 2 
x 3 +  2 x 4  — 3xj d

< (1 -  o a
x3 + x 4 X i  +  ( x x  +  x 3) /2

< ( l - £ ) 2 (3 /4 )d |x4 - x ar

A 2 =  < 1 - 0 x3 -
X \  +  X 2

< < 1 - 0 X 3  -
X i  + (xi +  x3)/2

=  e(l -  c)(3/4)d |x3  -  x x|d < (3 /4 )J |x3  -  xx|rf.

a 3 = < i - 0
x 3 +  x 4

-  x i = < 1 - 0
X 3  — X l  t X 4  — X i

^ H

< i£ ( l - £ ) [ |x 3 - x 1|li +  |x 4 - x 1|<'].

A 4 -  e2 |x3 — i i | a

Adding up these four inequalities, we have

A (x1,x 2,x 3,x 4) < | < 1 + e)|x3 -  + £<1 -  0 |x4 - * i [ rf+

(3 / 4 )d \x3 - x 1\d + (3/4)d \x4 - x 1\d .

Now, let us bound the middle term A (x3, x2,x i,X 4). Again, we bound each of
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its four terms:

Ax =  ( l - e )2
x i  +  X 4  x 3  +  X 2

< ( i - 0 2
X 4  — Xx

= (1 -  £)2( l /2 )d|x4 -  X X r  < (1 -  €)(3/4)tf|x4 -  aril"

A 2 =  € ( 1 - 6 )
X 3  +  X 2

-  * 1

< i c ( l  -  C ) [ | X 2 -  2 x 1̂  +  | X 3  -  X x | d ] .

A3 = e(l -  e) x 2 -
Xx +  X 4

< £ ( ! - £ )
X 4  — Xx

=  e(l -  £ ) ( l /2 )d |x 4 -  xx|d <  e(3 /4)d |x4 - x x |°

A 4 = £2 |X2 -Xxj°

Summing the above four terms, we get

A ( X 3 , X 2 , X X , X 4 )  < k ( l  + e)|*2 -  X x | d  + §6(1 -  e)|x3 -  x i\d +  (3 /4)rf|x4 -  x x | “

Finally, we obtain an upper bound for A (xx,x3,X2, i 4).

Ax = ( 1 - 6 )2
X x  +  x 3  X 2  +  X 4

< ( i - 0 2
X 4  — Xx

= (1 -  €)2( l /2 ) d [x4 -  xx|rf < ( 3 / 4 ) rf |x4 -  X i | d  .

a 2 = < i - 0
xx +  *3

-  x 2 <  <1 -  0
x3 — Xx
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= t ( l  -  e )( l/2 )rfjx3 -  x i |d < (3 /4 )d|x3 -  xx|°

A3 =  e(l -  e) x 4  +  x 2
~ x l < ±e(l - e ) [ |x 2 -  Xj + |x4 -  x i |rf]

A 4 =  e2 |x2 -  x i |d < e2 |x4 -  x i |a .

Summing up the four terms, we get

A (x !,x 3,x 2,x 4) < ^£(1 -  c) |x2 -  xi\d +  | e ( l  +  c) |x4 -  xx|d +

(3/4)^ |x3 — xx|d +  (3 /4)d |x4 — x i |rf.

Now th a t we have bounded all three A terms, we can add up the bounds. We 

obtain

A ( x i , x 2 , x 3 , x 4 )  +  A { x 3 , X 2 , X j , X 4 )  +  A (x i,x 3, x 2 , x 4 )

< t  |x 2 — ixl^ ■+■ £ |x3 — xx|^ +  € |x4 — xx|^ +  2 (3 /4 )“* |x3 — Xil^ +  3 (3 /4 )“* |x4 — x j | a

< [e +  3(3/4)“*] £ | x , - x i |“* < I c ^ l x .  - x , - ^ ,
*< 3 i < j

by the definition of c. This settles Case 1.

C ase  2: x 2 < Again, we bound each of the three A terms, and then

add up the three bounds. First, let us bound the four terms of A (x i,x 2,x 3,x 4).

Xx +  X 2  *3 +  X 4
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X 4  ~  X \  X 4  -  X 2  X 3  — X i  £ 3  -  X 2  
+ — :—  H-------:------ r

■  4 ■ 4 ■ 4 ■ *

<  l ( l  -  C)2 [ |* 4  -  * l | * - +  1*4 “  X2f  +  | * 3  “  * 1 ^  +  1*3 ~  *21*].

A 2 = e(l — c) *1 + *2
-  *3 < |«(1 — e)[|*3 -  * i |d +  1*3 -  *2!*]-

A 3 =  c(l -  e) * 1  -
*3 +  *4 < |c ( l  -  c)[|*3 -  * l |d +  1*4 -  *l|*].

A4 =  €2 |*3 - * 1|a

Adding up the four terms, we get

A (*i,*2,*3,*4) < K 1 +  e)2 I13 ~  * i |d +  iC1 “  f2)i*4 ~  *il*

+  ?(! -  f2) 1*3 -  *2|d +  j t 1 “  e)2 1*4 “  *^1*

< |X, 1*4 -  1“

+  5 ( 1  “  f 2 ) 1*3 -  * 2 1* +  K 1 ~  0 2 1*4 “  X2\d

1 +  « ,d
4 ■ S i * 4 ■ *jT

*< 3

Secondly, we bound the four terms of the term  A (*3,* 2,* i ,* 4).

A , =  ( 1 - e )2 *3 +  *2 *1 + *4 < (1 - € ) 2( l / 2 )d |*4 - * l | '

< (1 — f)(3/4)d|*4 — *i| .

A 2 =  e(l -  e) *3 +  *2
-  *1 = «(i -  0

*3 +  (*1 +  *3)/2
~  * 1
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= f( 1 -  0 (3 /4 )d |*3 -  xa|d < (1 -  0 (3 /4 )d |*3 - x t \d .

A 3 -  « ( ! - « ) x 2 - X 1 +  x 4

< €(3/4)d |a54- x 1|fl

A 4 -  € |x2 — Xj | < e2
xi +  x3 Xi

< e \ l / 2 ) d |x3 -  X! |d < t(3 /4 )d |*3 -  xa |d

Adding these four inequalities yields

A ( * 3 , ® 2 , * 1 , ® 4 )  <  ( 3 / 4 ) d | x 3  - X i | d  +  ( 3 / 4 ) d j®4 -  x i | d .

Finally, we bound the four terms of A (x i,x 3, x 2 , x 4).

Ax =  (1 — t )2
X \  +  X 3  X 2  — X 4

<  (1 — 0 ( 3 / 4 )  | i 4 — Xx  |

A 2 =  e ( l - e )
xx +  x3

-  x2 5: f (l — c) ( l /2 ) ti |x3 — xx|d

< ( 1 - 0 ( 3 / 4 ) “ |* 3 - x x P .

A 3 = e(l -  e) 

-  « ( i - 0

xx -
X 2 +  X 4

<  €(1 -  0 X x  -
(xx +  x3) / 2  +  *4

2*4  -  * 3  — 3*x
^  e( l — 0 (3 /4 )“ |x4 — xx|c

< c(3 / 4 )“ |*4 - X i r .
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A 4 = €2 1*2 -  < C2
tfr +  x 3

-  Xl

=  e2( l /2 ) rf |a:3 -  a:itrf < ^(3/4)d |x3 -  *, |d

Adding the four terms, we get

A ( i i , x3, x2, ®4) < (3 /4 )d |x3 -  X!\d + (3 /4)d |x4 -  xa |d

Again, now that we have bounded all the three A terms, we add up all three 

bounds to  get

A (xj, X2, X3, X4) +  A(®3, X2, £ 1, 2:4) +  A(X1,X3,X2,X4)

-  +  £) H  I1*' ”  xi \d +  2(3/ 4)d 1*3 -  xi \d +  2(3/4)rf |x4 -  xj \ti
i<3

< [ ^ 4 ^  +  2(3 /4)j ] 11* -  *j\d < 5C H  I1* -  xi \d •
«<i

This settles Case 2 as well as the Lemma.

•<j

□

Using Lemma 1 above, we can prove the contraction result tha t we desire. Let 

x = ( i i , x 2,X3,x 4) be a random vector in 3f4 such tha t x i ,x 2,X3 , and x4 are all 

mutually independent, and x i ,x 2, and X3 are identically distributed. Consider in­

dependent random variables z\ and x2 with the following distributions:

zx =
£ l± £ 2 .

2 with probability 1 — t; 

m in (x i,x2) otherwise.
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x3+x< with probability 1 — e;
22 =

min(a;3, i 4) otherwise.

L em m a 3.3 (C o n tra c tio n  L em m a) I f  x \ , X 2 , x 3 , x 4 , z \ ,  and Z2 are random vari­

ables defined as above, then

•<i

where c — max(2e, ^-jp) +  6(3/4)J.

P ro o f: For fixed x = (x i , X2 , x 3 , x 4), we have E[\z\ - 22^) =

Therefore, E(\z! -  z3|d) =  .E[A(a;i,a:2,£ 3 ,£ 4)]. By the hypothesis, the three tuples 

(x1? ®2, £3, 24), {xz-,x2, x 4 , x 4), and ( x \ , x 3 , i 2 , x 4) all have the same distribution. 

Take expected values of the inequality in Lemma 3.2. All three expected values on 

the left are equal. The lemma is now immediate. □

To make this a contraction result, we need the constant c to be less than 1. Given 

e < | ,  clearly, we can choose d sufficiently large so th a t c < 1. In fact, d — 8 log j-4^- 

suffices.

Let us go back to our random tree. From our contraction lemma, it is immediate 

that E(\wi -  w{[d) < cE (\w i-i -  where c is the same constant as in the

contraction lemma. Therefore, E(\wk — < c*£(|u;o — u>o|d) < ck2 e{\ — c).

Next, we would like to  show that the expectation a t the root E ( w k) is bounded 

away from 0 .

E(wk) = (1 -  e)E( W k~ 1 *  Wk~ I ) + £.E(min(tnJfc_i, t u ^ ) )
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=  E{wit_ i )  -  \ * E ( |t«fc_ i  -  IB*.!!).

Iterating, we have

fc—1
E(wk) = E(w0) ~  \ e Y ^ E ( \ w i - w ' i \ )

«=o

> 1 - € -  h  \ / E (\Wi ~ wi\d)
1 = 0

, (2«( ! - < ) ) * / '
"  1 e 2f l - c 1/* '

Here, we applied Jensen’s inequality [HLP52] to bound £(|u ;t -u>([) by E\w{ — u>-|d, 

and then summed up the geometric series with ratio c1̂  < 1. This itself does not 

prove the theorem for all € < j  because c1̂  might be very close to 1 causing the last 

term  to become much bigger than 1 — €. However, we can the majorizing argument 

in Chapter 2 , Lemma 11 (see also [BN93a]) to  complete the proof for all fixed t <
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Chapter 4

A  R am sey-theoretic result

4.1 Introduction

The power of the probabilistic method in combinatorics was demonstrated first by 

Erdos [Erd47] and later by Erdos and Renyi [ER60] when they laid the foundation 

for the theory of random graphs. Since then, numerous new combinatorial results 

have been proved using this beautiful technique and elegant proofs provided for 

classical theorems [ASE92]. Also, the theory of random graphs has developed into a 

rich field with many exciting problems. Ramsey theory [GRS90] is one fascinating 

area where the theory of random graphs has seen a lot of application. In fact, 

Ramsey theory had a  lot to  do with the early development of the theory of random 

graphs. See [Erd47,Erd61] for more on this.
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4.2 B rief H istory

Prove tha t in any collection of six people, either three of them mutually know each 

other or three of them mutually do not know each other. This popular puzzle is 

probably the most famous result that can be considered Ramsey-theoretic. Burkill 

and Mirsky [BM73,GRS90] state: There are numerous theorems in mathematics 

which assert, crudely speaking, that every system of a certain class possesses a large 

subsystem with a higher degree of organization than the original system. The afore­

mentioned puzzle is a simple example of this phenomenon, of which Ramsey theory 

is an im portant part. Results in Ramsey theory usually state th a t if we partition 

a large system into many parts, then at least one of the parts contains a subsys­

tem of a  given size [Bol85]. For example, Van der Waerden’s theorem says tha t 

if the positive integers are partitioned into finitely many classes, then at least one 

class contains arithmetic progressions of arbitrary length. Similarly, Schur’s theo­

rem states that if the positive integers are partitioned into finitely many classes, at 

least one class contains x, y, z  such tha t x  +  y =  z. A generalization of the earlier 

puzzle problem would say that if a graph contains sufficiently many vertices, then 

it has either a  complete subgraph of k vertices or an independent set of k vertices. 

This is a special case of Ramsey’s theorem. The partitioning of a  set can be thought 

of as a  coloring of the elements of the set. The Ramsey number R(k,  I) is defined to 

be the smallest integer n such tha t if the edges of the complete graph on n vertices 

are colored red or blue, then there will be either a complete subgraph of k  vertices
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whose edges are all red, or a complete subgraph of I vertices whose edges are all blue. 

Ramsey [Ram30] showed tha t R ( k , l ) is finite for any two integers k and /. One of 

the first applications of the probabilistic method in combinatorics came when Erdos 

[Erd47] showed tha t R ( k , k ) > 2k ' 2 for k  > 3. Simply color each edge red or blue, 

randomly and independently.. If n < 2k/ 2, the expected number of monochromatic 

complete subgraphs of size k is seen to be less than 1. This shows the existence 

of a coloring tha t avoids monochromatic cliques of size k.  A small improvement 

can be obtained by using the Lovasz Local Lemma [ASE92]. Ramsey numbers are 

notoriously difficult to  determine. Even R(5,5) is not known precisely. For more on 

this, see [Spe87].

4.3 The R odl-R ucinski R esult

Let us now consider the problem of obtaining Ramsey type results for random 

graphs. In the late 1960s, Erdos asked if there was a graph G  whose maximum 

clique size was 3 and such that any r  coloring of the edges of the graph would result 

in a monochromatic triangle. This was answered in the affirmative first by Folkman 

[Fol70] for two colors and later by Nesetril and Rodl [NR84]. Spencer [Spe88] used 

the probabilistic method to show the existence of a  ‘small’ graph satisfying this 

property for r  =  2, the two coloring problem. (Typically, the numbers involved here 

are VERY big and the ‘small’ graph has roughly three hundred million vertices.) 

Basically, he showed th a t a random graph on n vertices, for n sufficiently large, with
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edge probability p = would be good enough. See also, Frankl and Rodl [FR86].

Formally, let G{n,p) denote the Bernoulli random graph obtained by deleting 

each edge of the complete graph on n vertices K n, independently with probability 

1 — p. F —* (G ) 2 means th a t any r-coloring of the edges of F  results in at least 1 

monochromatic copy of G in F. Rodl and Rucinski [RR94] proved the following:

T h eo re m  4.1  For all r > 2, there exists C > 0 such that i f p >  C n~xf 2 then almost 

surely every r-coloring of the edges o f G (n,p) results in a monochromatic triangle.

Note that the property G —> {K?f£ is an increasing property of G— adding an edge 

can only make the graph satisfy the property, not destroy it. Therefore, it follows 

from [BT86] th a t there is a  threshold function p*(n), for each r , so tha t if the edge 

probability p is such that p =  o(p*), then almost surely, G (n ,p ) (K 3)2, while if

p* = o(p), then almost surely G (n,p)  —► (K 3 )2. Luczak, Rucinski and Voigt [LRV92] 

showed tha t if p < cn-1/ 2, for c sufficiently small, P r(G (n ,p) —+ ( .K 3)2 ) —> 0, as 

n —»■ 00 . Combining this with the above theorem, Rodl and Rucinski noted tha t 

p = n ~ x! 2 is a threshold for the property G (« ,p ) —► (A^)2, independent of r.

4.4 M ain R esult

4 .4 .1  S ta te m e n t  o f  M a in  R e su lt

In this thesis, we extend the result of Rodl and Rucinski [RR94] in the following 

sense. Let M T t(G) be the number of monochromatic triangles in any r-coloring of

G. If p > C /y /n ,  then from [RR94], almost surely there is a  monochromatic triangle
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in all r-colorings of the random graph. Is it true that, almost surely, a  fraction of 

the triangles will be monochromatic? Our main theorem shows that this is indeed 

the case.

T h eo rem  4 .2  For all r > 1, there exists c > 0 and a  > 0 such that the following 

holds: Let p  >  Then, almost surely,

M T T(G (n,p)) > a^j-n3/2.

□

We prove our theorem by modifying the proof of [RR94]. First, we need some 

definitions. The next subsection contains the important definitions and a brief 

description of the main tools used.

4 .4 .2  D e f in it io n s  a n d  T o o ls

Let G be a  bipartite graph on vertex sets A , B . For X  C A  and Y  C B , let e (X , Y )  

denote the number of edges in the induced subgraph on X  x V. Then the density 

of G on X  x Y  is p ( X , Y )  =

D efin ition  4 .3  G is said to be e-regular i f  fo r  all X , Y  such that |X | > e|>l| and 

\Y \> * \B \,

\ p ( X , Y ) - p ( A , B ) \ < e .

G is said to be (>  d,e)-regular i f  it is e-regular with density p > d.

Let H  be a graph with vertex set A\ U . . .  U A j ,  the Ai being disjoint.
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D efinition  4.4 H is said to be (> d, e, f)-regular (with respect to this fixed partition 

o f the vertices) i f  for all i , j ,  1 < i < j  < f , H is (> d, e)-regular on 4 , X Aj.

For properties of (>  d, f)-regular graphs, see [RR94].

Now, we state a  version of the celebrated Szemeredi Regularity Lemma tha t is 

suitable for our purposes. This version is implied by the original proof of Szemeredi 

[Sze78] and can be explicitly found in [EHS+93].

L em m a 4.5 (T h e Szem eredi R egularity Lem m a) Let A i , . . . , A m be disjoint 

sets, each of n vertices. Let H i , . . . , H w be graphs on the union of 4 i , . . . ,  Am . 

Then, for all e > 0, there exists a C < Co(m, e) such that there exists a partitioning 

of the sets Ai into Ei ,A} , .  . . , A f  such that |E ,| < en, |j4f| =  \Aj\, for a lls ,t > 1 

and for all x, Hx is e-regular on A* x on all but em2C 2 pairs.

D efin ition  4.6  n —* ( l \ , . . . , / r ) i f  for every r-coloring o f the complete graph on n 

vertices, there exists i, 1 < i < r, and a complete subgraph T  o f li vertices with all 

edges colored i.

We now state a  version of Ramsey’s theorem [GRS90] suitable for our purposes.

L em m a 4 .7  (R am sey’s T heorem ) For all / i , . . . , / r, there exists n0 so that for  

n  > no,

n -*■ ( / l , . . . , / r ) .

C orollary 4.8  For all f ,  there exists «o (/, r)  so that for n  > no,

»  ( / i , - - - , / r + i , r  +  2)
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where / i  = ..  ■ = f T+i =  /•

D efin ition  4.9 Let R r( f ) =  no(f , r) .

We will use this definition later to  decide the size of the graph that we start with.

Now, we mention two large deviation theorems tha t will be repeatedly used 

through out the proof. The first one, commonly known as the Chernoff bound, 

deals with finite sums of mutually independent random variables. The second is 

Janson’s inequality for the sums of random variables with limited dependence.

Let Y i,.. .,Y n be mutually independent zero-one random variables. Let Y  = 

Y,. Let p = E ( Y )  be the expected value of the sum.

L em m a 4.10 (C hern off’s bound, see  [ASE92]) For all e > 0, there exists a 

positive constant C( such that

Pr(|Y  -  p\ > ep) < 2 exp[—ce/z].

Let SI be an arbitrary finite set and let R  be a random subset of Si given by 

P r(r  G R) = pT, these events mutually independent over r £ ( l .  Let I  be a  finite 

index set and for A,, i G / ,  given subsets of ft, let flt , i G / ,  be the event that 

Ai C R  and Y , t G / ,  be the associated indicator random variables. Let Y =  £ , e/  Y- 

Furthermore, let p  = E ( Y )  be the expected value of Y. Can we get a large deviation 

theorem for Y? Janson [Jan90] provides an inequality to  bound the lower tall. The 

nice part about this inequality is th a t it is only in terms of the expectation of 

Y and some version of a  second moment of Y. This makes it easy to  use. Define 

A =  Yli~j Pr(5< Afi,-). This sum is over all ordered pairs ( i , j )  such tha t AiDAj ^  <£.
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L em m a 4.11 (J a n s o n ’s In e q u a lity )  With notations as above, i f  0 < e < 1, tken

Pr( Y < ( l - 0 / x ) < e x p [ - l i ^ ] .

For a graph G, let Gp denote the random subgraph of G  obtained by independently 

selecting each edge with probability p.

4 .4 .3  P r o o f  o f  M ain  R e s u lt

We prove our theorem by modifying the proof of Rodl and Rucinski [RR94]. The 

proof is by induction on r, the number of colors. In order to keep the induction going, 

we (and [RR94]) are forced to  prove a stronger theorem. For intuition why, [RR94] 

provides the following argument. Consider a straightforward inductive approach 

common in Ramsey theory. Partition the vertex set into two parts, U and V. Expose 

the edges in two phases. First, generate the edges of G(n,p)  that go between U and 

V.  Let an adversary color them. For each vertex u in U consider the most common 

color with respect to edges incident on u. Now, there is at least one color, say red, 

such that red is the most common color for a t least ^  of the vertices. Call this 

set S  and consider the subgraph H  of the complete graph on S  defined by edges 

(x , y ) such th a t both x  and y are connected to  a common vertex in U by edges 

colored red. If H  contains a complete subgraph of size fl(n), then we could apply 

induction on r  — 1 colors to  show that there will, almost surely, be at least one 

monochromatic triangle in G(n,p) .  This is because, if the adversary does not want 

to create even one monochromatic triangle, then he cannot color any edge of H  (that 

is generated) by the color red. In our case, the adversary does not mind generating a
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few monochromatic triangles, so our task in finding the subgraph H  is even harder. 

Unfortunately, H  does not have such a nice structure. However, using the Szemeredi 

Regularity Lemma, one can find a well structured, large subgraph of H,  on which 

induction can be applied. (This will become clear later.) Therefore, the induction 

hypothesis has to  be strengthened. We will not deal with the random subgraph of 

the complete graph but with random subgraphs of (>  d, e, /)-regular graphs. We 

will however, retain the two-round exposure of edges (p = c/y /n  = (ci +  C2)/y/n),  

first putting in edges with probability c\ jyfn  and later with probability c^jy/n.  

Almost surely, the graph obtained after the first round will have 0 (c in 3̂ 2) edges,

3 / 2so we have to contend with the r Cin colorings the adversary can choose from. So, 

we have to prove our theorem with failure probability exp[-£l(cn3/ 2)]. The actual 

theorem is as follows:

T heorem  4.12 For all r > 1 there exists f  so that fo r all d € (0,1] there exists 

e > 0 so that the following holds: I f  G is any (>  d, e, f)-regular graph on n f  vertices 

with respect to f  sets o f size n each, then, for sufficiently large c, with p = c/y/n , 

there exists a 1 > 0 so that for all sufficiently small a,

F t (MTt (Gp) < ac3n3/ 2) < exp[—a'cn3 2̂].

□

I t is easy to see th a t the main theorem, Theorem 4.2 follows from the above theo­

rem. Note that K / n, the complete graph on f n  vertices, contains a (>  d, £, /)-regular 

graph (with d =  1). Apply Theorem 4.12 to this subgraph after renormalizing the
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number of vertices and, by the monotonicity of M T r, we are done.

We start with the base case: r  =  1. Even this, very unusual in Ramsey theory, 

is quite nontrivial. We are now simply looking at the number of triangles in the 

random subgraph Gp and want to show, that with probability 1 -e x p [—cn3/ 2], there 

will be fi(cn3/ 2) triangles. For this, we need Janson’s inequality for the lower tail of 

sums of random variables with limited dependence.

B ase  Case: One Color

In this case, r  =  1. Fix /  = 3. Let A \ , A ^ A z  be sets such tha t |A i| = IA2I = 

|j43| =  n.  Define G\  to be a 3-partite graph on ( A \ , A 2 ,A s). Recall th a t p(Ai,Aj)  

is the density of the induced bipartite subgraph G (Ai ,A j ) .  Let p(A{,Aj)  = d,j. 

Let d = min{di2,d i3, ^23}- Let e satisfy the following condition £ < d/2. Also let 

G(A{, Aj)  be (>  d, c)-regular. Let Gp denote the Bernoulli random graph where 

each edge of G\  is placed with probability p, independently of each other. For each 

triangle t = { x , y , z }  in G\,  let A t be the event th a t the three edges x y , y z  and xz  

all lie in Gp. Let T  be the random variable denoting the number of triangles in Gp. 

Note that T  = M T \ .  Let p  be the expected number of triangles in Gp.

L em m a 4.13 Let d G (0,1] and £ < | .  Let G\ be a 3-partite graph, as above, that 

is (>  d,e,Z)-regular. Then, for p — c/y/n,  with c > 1, there exists a ' > 0 so that 

for all sufficiently small a the following holds:

Pr(T < ac3n3/2) < exp[—a 'cn3!2].
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P roo f: For any vertex a;, let A,(x) denote the set of vertices adjacent to x  in A,- 

and let deg(x, Ai) =  |AT,(x)|. For i £ {2,3}, let X{ be the set of x £ A \ such that 

deg(x, A{) < (du  — e)n. Then, by the definition of e-regularity, we have | A',j < era.

Consider S = A \  — (X i  U X 3 ). Then | 5 |  >  (1  — 2e)ra. Note tha t for x £  S, we 

have N{(x) > (du — t )n  >  cn [by the condition on e]. Fix a vertex x in S.  Consider 

G(-/V2(x), iV3(x)). Again, by the definition of e-regularity, this graph has density d! 

such th a t \d‘ — ^23! < (•

Let T (x) denote the number of triangles in G\  containing x. Then T(x)  > 

(d\2  — e)(di3 — c)(d23 _  e)u2. Summing over all x £ S,  we get the to tal number of 

triangles in G\ is T\ > (d\2  — c)(^i3 — c)(^23 — c)(l — 2e)n3 > n?(d3 — 5e). Note that 

this is a  strictly positive fraction of n3 because of the condition on e.

Now we use Janson’s estimate for the lower tail to  show that, with very high 

probability, there will be 0 (c3n3/ 2) triangles in Gp. By Janson’s inequality, for

0  e  [0 , 1],

P r(T  < (1 -  m  < « p [ - I ^ ] ,

where A = A j4<], s and t  being triangles in G\\ and n  is the expected

number of triangles in Gp. Then fi = ^M^t] > n3! 2 c3 (d3 — 5c), and

A < 3n4p5 < 3csn3^2. For c > 1, this gives fi + A < 4c5ra3/ 2.

Therefore, we have

Pr(T < (1 — /3)(d3 — 5e)c3ra3/ 2) < exp[— ~ ( d 3 — 5e)2cra3̂ 2].
8
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It is easy to see tha t we can renormalize the constants and then the base case is 

proven. □

We go from r  to r + 1 in two phases. S tart with a (>  d, e, / + )-regular graph

G. We will choose / + =  R r( f )  as in Definition 4.9; /  being the requisite number 

of vertex sets for the r-color case. Put in edges with probability c \/y /n . (Later, we 

will put in edges with probability c^ /y /n , c =  c\ +  C2, with C2 much bigger than c i). 

Let the adversary color these edges. Then, with failure probability exp[~fl(cin3̂ 2)], 

for any coloring, we show tha t we can pick a color, say red, and a subgraph H  of G 

th a t is (>  d', €/, /)-regular. For the Rodl-Rucinski theorem, we need th a t every edge 

of H  is NotRed, i.e., every edge (x, y ) of H  has both vertices x and y connected to 

a  common vertex z  by edges colored red (by the adversary). Therefore, no edge of 

H  can be colored red if it is picked in the second phase because it would result in 

a  monochromatic triangle. However, for our theorem, this is not sufficient since the 

adversary does not mind creating a  few monochromatic triangles. So we need the 

notion of VeryNotm edges. A pair (1 , y) is called VeryNotw if there are Scj vertices, 

0 < 6 < 1, all joined to  both x  and y by edges colored w (by the adversary after 

Phase 1). The subgraph H  consists of only VeryNotw edges, for some color w. A  

Very No tin edge if colored w creates Scj monochromatic triangles. For simplicity, let 

us say that H  contains VeryNotRed edges. In the second phase we put in edges 

with probability ci jyfn.  But we will focus our attention on H . Every edge in the 

random subgraph Hp of H  tha t is colored red creates bc\ monochromatic triangles. 

The total number of monochromatic triangles created is then at least the number
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of monochromatic triangles of Hp plus die2 times the number of edges of Hp colored 

red. We will show tha t this term is a t least fl(c3n3/2), with failure probability 

f l ( - c 2n3/2). We will do this by considering an r + |  coloring of H.  An r  +  i  

coloring is really an r +  1 coloring where the use of one particular color, say red, 

is costly. For any r  +  1 coloring of a  graph, let A be the number of red edges and 

M Tr.)_i the number of monochromatic triangles. Then let A =  6 c2 A + M Tr+\. The 

theorem for r +  ^ colors would say that with high probability, for any r +  1 coloring 

of the random subgraph Hp, we have A =  ft(c3n3/2). The precise statement is given 

in the next subsection. The theorem for r  +  1 colors will follow directly from the 

theorem for r + ^ colors. We will see this after the next subsection.

4 .4 .4  r a n d  a  h a lf  co lo rs

For convenience, we will state the theorem for r + |  colors as an implication from 

the theorem for r colors to  the statement about the r +  5 coloring.

T h e o re m  4.14 Suppose that i f  G is (>  d, c, f)-regular on f n  vertices with respect 

to f  groups o f n each then for  r  > l ,c  >  Co, co independent o f n, any r-coloring of 

the edges o f G'p, p' =  c /s/n , satisfies

P r{M Tr(G’p) < 0c3n3/2) < exp[-/?'cn3/2]

where /?' is dependent upon e, d, / ,  and (3 is sufficiently small.

Let 0 < ci < c2 and 7  € (0,1). Let p = c2/y/n.  Consider an (r +  l)-co/ortnp 

of Gp. Let R be the subgraph of Gp consisting of all the red edges o f Gp. Let
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M Tt be the number o f monochromatic triangles in the r-coloring of GP\R . Let 

A =  7 c2|H| + M Tr{Gp\R ) ;  and let Fa be the event: A < a c \n 3!2. Then, for  

sufficiently large C2 , there exists a ' dependent upon e, r, d, 7 , such that, for sufficiently 

small a , the following holds:

P r(Fa) < exp[—a 'c 2«3^2]-

P ro o f: The idea is as follows: First, we will condition on Gp having roughly c2n 3 / 2 

edges. Given that, we will bound the probability of the event F  (which we will call 

a failure 1 by the failure probability of an adversary using a random  coloring times 

some appropriately small factor.

Let the failures be:

1) failure event A: Gp has too few or too many edges.

|GP| < \c 2n3!2df2 or \GP\ > \c 2n3/ 2f 2.

By the Chernoff bound, there exists T) > 0 such that

Pr(A) < exp[—rfc2n3/2].

2) failure event B: B  = V B e<et, where \c 2n3 / 2d f2 < e < \c 2n 3!2f 2, e\ < ^ c \n 3f 2, 

and B e,ei is the event th a t

|GP| =  e and 3R, |U| =  e i, R  C Gp, and event C: There exists an r-coloring of Gp 

such th a t M T r(Gp\R )  < ac3 n3/ 2.

Choose a  sufficiently small so that:

1. %f2 H ($ b ;)  < 2p i \ P d  ~  7 )) H  beinS the binary entropy function. (H(x )  =
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—a;log2 a: — (1 — a:)log2( l — a:).) 2 . a  < £ r { \ f 2d -  *).  

3. a  < \~ if2d.

First, note that if there indeed is an (r  +  l)-coloring of the e edges of Gv with e\ red 

edges th a t causes failure, then with a random choice of ej red edges, the probability 

of failure is more than Also, the probability of an event occurring in a random 

graph with e edges of which e\ are removed randomly is the same as the probability 

of the event occurring in a  random graph with e — e\ edges. Therefore,

P r (5 e>ei) < ^ 6 ^  Pr[random graph with e — ej edges satisfies event C].

We now switch back to  the Bernoulli model. We state, without proof, the fol­

lowing easy lemma.

L e m m a  4.15 Let G be a fixed graph on n  vertices with m  edges. Let g(n,e)  be the 

probability o f some event A occurring on the random subgraph of G with e edges. 

Also, let g be a decreasing function o f e. Let f {n ,p)  be the probability that the event 

occurs on the Bernoulli random subgraph o f G.

Then, i f p = % ,  g ( n , e) < 2 /(n , §). □

We will apply the above lemma for

\ f 2dc2n2! 2 cm 3/ 2 \ f 2dc2n3^
8 c2 /y/n.

From the conditions on the choice of a , the value of 6  is positive. Choose c2 suffi­

ciently large so tha t Sc2 > c0.

Pr[Gy satisfies event C],
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Summing over all possible choices of e and e\ ,

Pr(2?) < n4 m a x P r(fieie, ) < 2n4 ( 6 ] P(Gp> satisfies event C).
e te i  ’ /

Applying Lemma 1,

P r (£ )  < 2n4 exp[^C2n3 2̂/ 2H ( +  ° (1))]exP [~ ^ ^ c2n3^2]»

where H  is the binary entropy function. By our choice of a ,  there exists a  (  > 0 

such that for sufficiently large n,

P t(B) < exp[—Cc2«3^2].

Combining the two cases, we have

Pr(f'a) < exp[—t/C27i3/ 2] +  exp[—Cc2«3/ 2]. Choose a'  = ^ m in ^ ,  £}. Then, for 

sufficiently large n,

P r(F a) < exp[—a 'c 2Ti3^2].

This completes the proof of the theorem for r +  ^ colors. □

4 .4 .5  r +  1 co lors

Now, we can complete the induction from r to  r  +  1 colors. The basic idea is that 

we will s ta rt with a (>  d, e, / + )-regular graph, and put in edges of Phase 1 with 

probability p =  ci /y/n.  Then we will show tha t with high probability (i.e. with 

failure probability exp[-H (cin3/ 2)]), we can extract a (>  dr, c', /)-regular graph H 

of VeryNotm edges, for some color w. Now, we can apply the result we proved above
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for r  +  l  colors, because each Very Not uj edge creates fl(c |) monochromatic triangles 

if colored w.  In order to construct the graph H , we need a few lemmas which we 

obtain by modifying the lemmas in [RR94].

Lem m a 4 .16  Let A be a set such that |j4| < kn 2 . Let A \ , . . . , A\ be subsets o f A, 

I = ec2, |4 ,| > en2. Then, there exists e1, dependent upon e and k, and S  C A , I-?! > 

e'n2 such that every x £ S  lies in at least e'c2 o f the 4,-.

P ro o f: Suppose that |5 | < e'n2. Then, we would have e,n2(ec2)+fcn2(e'c2) > e2c2n2. 

This implies e'e +  he1 > e2; choosing e' small enough we get a contradiction. □

Lem m a 4.17  (Subset L em m a) [RR94]) For all d ,d  > 0, there exists e > 0 so 

that the following holds: Let G be (> d, e)-regular on A , B ,  both of size n. Let A \  B 1 

be random subsets of A , B  respectively, each with probability p = cn~1!2. Then the 

probability that G is not (>  d/2,d)-regular on A ' X B '  is less than exp[—fi(c^/n)].

L em m a 4 .18 For all d, 7 > 0, there exist e, 6  > 0 such that the following holds: Let 

G be (>  d, e)-regular on A , B  both of size n. Let Ai, Bi, 1 < i < n /c 2 be independent 

random subsets o f A ,B  respectively, all with probability p = cn-1 ?2. Let failure F  be: 

31 C {1, . .  . ,n / c 2}, | / |  =  7 n /c 2 and there exist for i € /  subsets A * C Ai, B * C Bi 

with |/1*| > 7 jAi\, |B *| > 7 |i?;| such that

| J J (4 *  x B*) n  G| < £n2.
i e i

3 /2Then, for c sufficiently targe, the probability o f  failure F is P r (P ) < exp[—Q (s^—)].
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P ro o f: First, we ensure tha t for most i € 7, both A, and Bi have the right size.

Let H{ = 1 if |Ai — Cy/n\ > \cy /n  or |B, -  Cy/n\ > | Cy/n, and 0 otherwise. Call

index i bad if H{ = 1, good otherwise. By the Subset Lemma from [RR94], E(H{) < 

exp[— Let  H  be the failure event tha t ^2 Hi > §7 ^-. By independence of 

the different Hi,

3 /2
Pr(jy ) < 2n e x p [-cv /n i7 ^ ]  = e x p [ - f t ( ^ - ) ] .

Let 7o be the set of good indices. W ith high probability, |/0| > p-(l -  j 7 ).

Failure F ' occurs if, given H  does not occur, there exists I\ C 70, |7i| > | 7 ;§-, and

| J  (AJ x B*)  Cl G\ < 6 n2 
•eh

To count the to tal number of edges in the union, we use a sequencing argument. 

Order the elements of I\ : 1 , . . . ,  |7ij. Consider a sequence of graphs Hi on A x  B.  

Initially, Ho has no edges. After the ith  round, Hi = U»6{i,...,«}(-^i x #*) LI G. Let 

Ni be the new edges added in the ith  round. N{ =  — |77,_i|. Clearly, we can

reorder the elements of I\ so that for all i: Ni > AT,+i. Also, let J  be the index 

so tha t for all i < J,  we have A, > { ^ 7 2)c2n, and for all i > J,  the reverse holds. 

There are at most 2 nn\n  ways to choose 7i, the ordering < on 7j, and the index 

J. For failure to occur, definitely J  < A7 ĵ-, where A is proportional to 6 . For 

each choice of 70, < , J , with high probability, there are at most 22J(2c'/") choices 

of A * ,B * for i < J .  Pick 6 small enough so tha t the removal of any <5n2 edges 

from G  leaves a G~ th a t is (>  d /2 , e/2)-regular (by Lemma 2.3 of [RR94]). Let 

G~ =  G \ Uig{i (A* x B*) n  G. For any e' < 7 ,d /4 , if G~ is (>  d /2 ,e/)-regular
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on any Ai X Bi, then |.A* x B* | (~1 G “ | > ( ^ 7 2)c2n. But this cannot be true for 

i > J ,  by definition of J . This implies tha t for all i > J , G~ is not (>  d/2,d)-  

regular on A, x B{. For each i, let this event be Ft . Then, for i > J , we have 

P r(iri) = exp[—kcy/n\. By independence of the Fi,

n 3 / 2
Pr( A  F‘) < ex p [-* (l -  A)-— ].

i>J

Therefore, the total failure probability of the event F  is

3/2
P r(-^) ^  +  (2nn!n)exp[2A-^-(2c\/n)]exp[—A;(l — A)—— ].

c c

3 / 2Choose S small enough so tha t A is small enough so tha t P r(F ) < exp[— )]. □

L em m a 4.19 For all d, 7 > 0, there exist e, 6  > 0 such that the following holds: Let 

G be (> d, e) regular on A , B  both o f size n. Let Aji,  Bj t, 1 < i < n/c2, 1 < j  < c2 be 

independent random subsets o f A ,B  respectively, all with probability p — cn~1/ 2. For 

each j ,  let Fj be the failure F  defined above. Let X j be 1 i f  Fj occurs, 0 otherwise. 

Let X  =  £ /=  1 X j. Then for  C > 0, P r(X  > Cc2) < exp[-fl(cn3/ 2)].

P ro o f: By Lemma 4.18, P r(X j = 1) < exp[— Then P r(X  > £c2) < 

(£2) exp[-ft(£cn3/ 2)] < exp[-fi(cn3/ 2)] □

L em m a 4.20  Let A  be a function from  { l , . . . , n }  x { l , . . . , m }  x { 1 , . . . , » }  x 

{ l , . . . , m }  -* {0,1}. Let |j4- 1(1)| =  N , and let N  < n2. Then there exists a choice 

of indices S  = {a 1, . .  . , a m} where 1 < ai < n so that for any distinct a , (3 £ S , and 

i , j  6  { l , . . . , m } ,  we have A(a, - , i ,aj , j )  =  0.
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P ro o f: Choose uniformly and independently from Then,

th e  number of l ’s picked is the sum a  =  A(bj , i ,bj , j ) .  The expectation of a is 

E ( a )  = N / n 2 < 1. Therefore, there is a choice of the 6,-, which we call a,-, so that 

no 1 is picked. □

We are now ready to  complete the proof for r  +  1 colors. We will do this in two 

phases. Let p = ^  We will set ci = (c  and C2 = (1 — £)c, where £, to

be fixed later, will be a  small positive constant less than 0.5. In phase 1, we put in 

edges with probability Then, we let the adversary color the edges. We label a 

pair (x, y) E G VeryNot-m if after Phase 1, there exist 6 c2 vertices all connected to 

both  x and y by edges colored w.  The choice of S will follow from the  next lemma. 

Then we show th a t for any adversarial coloring, one can find a color w such tha t 

the  graph of Very Not- w edges of G  contains a (>  d' , d,  /)-regular graph H . Then 

apply the result for ( r  +  j )  colors for the induction to  work.

P h ase  1: Consider a  (> d, c, / + )-regular graph G  on / + sets of n  vertices each. 

Here, /  is requisite number of sets for the r-color case, and / + =  R r( f ) ,  as in 

Definition 4.9. The choice of the constants will become clear over the course of the 

proof. Put in edges with probability p = =  -fy*- Here, Co will correspond to

the  number of classes in the Szemeredi Regular Partitioning, tha t each vertex set is 

split into. We need the following useful lemma.

L e m m a  4.21 Let v40> • • • > A r+2 be any distinct r +  3 sets o f the vertex sets o f G. Let 

p  =  Let m  — g r. Consider the random subgraph of G with edge probability

p. Let S  be the following event: For any r + 1 coloring o f the random subgraph o f G,
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and fo r  all B o , . . . , B r+ i , B i  C A,-,|.B,| = m , there exist w , i , j , 6 such that |F | > 8m 2 

, where x E E i f x  E (A, X A j )  l~l G and x is VeryNot-w.

Then,P(->S) < ex p [-fi(c jn 3^2)].

P roo f: There are less than  2 ° ^  choices of the B,. Fix a  choice Bo, ■ Br+2. Let 

7  = ^ r-j. Let for x E Bo, let B f  denote the neighbors of 1  in B, in the random

graph. For any vertex x E Bo, for any coloring, there will be a color w  and sets 

Bj , Bk  such that ^  of the edges from i to  both B f  and B% are colored w.  Then, 

there will be 7 m vertices x  E Bo all having the same pair Bj ,  Bk and color w.  Call 

a pair of vertices (x , y)  Not-to if there exists a vertex z  connected to both x  and y 

by edges colored to. Split these 7 m vertices into c2 groups of equal size. By Lemma 

4.18, each group produces 8 ' m 2 Not-to pairs, with failure probability exp[—f2(~r-)]. 

Now, by Lemma 4.19, with failure probability exp[—fi(c jn 3/ 2)], we have 6 m 2 pairs 

each of which becomes Not-to 8 {c\ ) 2 times. That is, we have \E\ > 8 m 2. Therefore, 

P(-iS) <  2°("> ex p [-ft(c in 3/ 2)] < e x p f - n ^ n 3/ 2)]. □

Let Hw C G  be the graph of VeryNot-to edges. We have, therefore, r +  1 graphs 

H i , . . . ,  Hw. Apply Lemma 4.5 to obtain a  common e'-regular partitioning. Choos­

ing t'  < ja, we can apply Lemma 4.20 to  obtain sets B \ , . . . ,  Bj+ each of size ^r-, 

such th a t B{, Bj  are all ^-regular with respect to all Hk simultaneously. From these 

B = { £ 1 , . . . ,  Bf+ }, we will extract the new graph. (We want it to be (>  d', d,  /) -  

regular.) Create a new graph M  on / + vertices N  — {1 , . . . , / +}. Add an edge 

labelled Not-to between i and j  if B,■ x Bj  contains > 8 m 2 VeryNot-to edges. If there 

is more than  one candidate color/label for any pair ( i , j ) ,  choose one arbitrarily. If
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there is no candidate label for (*, j ) ,  add an edge labelled Not-Not. It is immediate 

from Lemma 4.21 that with probability exp[—0 (c in 3/ 2)], M  does not have a  clique 

of size r  +  2 of Not-Not edges. Therefore, by Ramsey’s theorem, Lemma 4.7, there is 

a clique of size /  of Not-w edges for some color w. Let the winning color be denoted 

by W; W  = w.  Renumber the sets in B  so that form this clique. Let

H m =  Hw restricted to  the union of the sets B \ , . . . ,  B j .  This, by Lemma 4.21, is a 

(> d', e', /)-regular graph on /  sets of ti/ C q vertices each. Remove the edges of H ” 

already generated in Phase 1 to obtain the graph H.  There are only 0 ( n 3/ 2) = o(n2) 

of them (otherwise we count it as a failure), so the graph is still €"-regular, by basic 

facts about epsi/on-regularity [RR94].

First, we define Phase 1 failures.

Failure Q\ occurs if the total number of edges generated in Phase 1 is more than 

2^ U ( / + )2n2. By Chernoff bounds, P r(Q i) < exp[—fl(c jn3/ 2)].

Failure Q 2 occurs if the (>  d', e", /)-regular graph H  cannot be produced. By 

Lemma 4.19, Pr(£?2) < exp[-ft(c in3/2)]. If Phase 1 is a  success, there are only 

(r +  l ) ° ( cin3/2) possible choices of H.

P h a s e  2 : Now we apply induction. Consider the random subgraph of H  with 

probability p = Consider any r + 1 coloring of the graph. Any time an edge is 

colored W  (the winning color of Phase 1), it creates 8 c\ monochromatic triangles. 

Let R  be the subgraph obtained by selecting all the edges of H  colored W.  Therefore, 

the to ta l number of monochromatic triangles is at least

6 c\\R\ +  M T r( H \ R )
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Let a Phase 2 failure be the event tha t this sum is less than acfn3/2. Choosing C2 

large enough so that we can apply the Theorem 4.14, this probability is less than 

exp[—7 /c 2 to3,/2], where 7 ' depends on 6  but not on ci. Therefore, the total probability 

of failure is

Pr(F) < exp[—AriCjn3^2] +  exp[/f2Cin3̂ 2] exp[—/iT3C2n3̂ 2].

The first term  accounts for Phase 1 failures. The exp[A2cin 3/2] term accounts for 

the different ways the adversary can color the graph H.  The exp[—A'3<:2n3/ 2] term 

accounts for Phase 2 failures. Pick small positive C so tha t

k 2<;-k 3(i - o  = -K4

with K 4 positive. Set K = (c , and c2 =  (1 — £)c, 80 th a t c = c\ + 

ci. Therefore, the failure probability is Pr(jF) = exp[—fl(cn3̂ 2)]. This proves the 

theorem. □
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Chapter 5

Conclusions, and Future Work

In this thesis, we have discussed three problems arising in Theoretical Computer Sci­

ence and Combinatorics, all involving randomness. We now mention some relevant 

open problems.

In Chapter 2, we showed th a t, for most sets, slightly-random sources are nearly 

as good as truly random sources. In particular, we proved th a t, for most sets, 

the €-biased probability of hitting the set is bounded away from 0. W hat are the 

exceptional sets? The set of binary strings with more Is than Os, the Majority set, 

is an example. Can we get a precise characterization of all the exceptional sets? 

Shamir [Sha87] used a Martingale technique to prove a strong concentration result 

for the 6-biased probability of hitting a random set. Unfortunately, his technique 

fails for € > 0.207. It would be interesting to extend his result to all fixed t < i .

In Chapter 3, we proved the existence of perfect information coin flipping pro­

tocols and leader election protocols tha t are immune to en cheaters, for every « < ^.
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W hat about explicit constructions of such protocols? Alon and Naor [AN93] and 

Cooper and Linial [CL93] provide explicit protocols for small, but fixed, c. It would 

be very interesting to extend these to every £ < j .

Finally, in Chapter 4, we looked at a problem in Ramsey theory. In particular, 

we showed that if an adversary r-colors the edges of the Binomial random graph, 

with edge probability c being a large enough constant, then almost surely, a 

fraction of the triangles in the graph will be monochromatic. Extending this result 

to hypergraphs is a natural problem.
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